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Based on the lattice Boltzmann (LB) approach, a novel hybrid method has been proposed for getting
insight into the microscale characteristics of the multicomponent flow of nanofluid. In this method,
the whole computational domain is divided into two regions in which different-sized meshes are
involved for simulation (fine mesh and coarse mesh). The multicomponent LB method is adopted in
the fine mesh region, and the single-component LB approach is applied to the coarse mesh region where
the nanofluid is treated as a mixed single-component fluid. The conservation principles of mass, momen-
tum and energy are used to derive a hybrid scheme across the different scaled regions. Numerical sim-
ulation is carried out for the Couette flow and convective heat transfer in a parallel plate channel to
validate the hybrid method. The computational results indicate that by means of the present method,
not only the microscopic characteristics of the nanofluid flow can be simulated, but also the computa-
tional efficiency can be remarkably improved compared with the pure multicomponent LB method.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In 1995, Argonne proposed a new concept of so-called nanofl-
uids which is a type of heat transfer fluids engineered by suspend-
ing ultrafine metallic or nonmetallic particles of nanometer
dimensions in some base fluids (Choi, 1995). Generally, the nano-
fluids have some important characteristics: (1) they show signifi-
cant enhancement in thermal conductivity (Kim et al., 2001), (2)
they have more stable suspensibility compared with those fluids
containing micro- and mini-scale particles (Lee et al., 1999) and
(3) reduced chances of erosion because of these small momentum
impart to a solid wall. In the recent years, the flow and heat trans-
fer features of the nanofluids have been widely investigated by
means of both experimental and theoretical approaches (Lee
et al., 1999; Wang et al., 1999; Arulmurugan et al., 2005; Xuan
and Li, 2000; Das et al., 2003, 2006; Enomoto et al., 2003).

As shown in Fig. 1, the nanofluid is a typical example that one
may find different understandings on fluid morphology, flow and
thermal processes if different scales are involved. At the macro-
scopic level, the nanofluid may be assumed to be an even-mingled
fluid with single-phase features. At the microscopic level, the
nanofluid is a two-phase fluid whose multicomponent features
cannot be neglected. Since the diameter of suspended particles
are at the level of nanometer, it is still a tough work to get fine in-
sight into the flow and energy transport processes of nanofluids at
ll rights reserved.
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the microscale with the conventional numerical approach. If one
tries to get microscopic view on the flow and thermal processes
of nanofluids, the computational grids must be ultrafine to deliver
information about the multicomponent features of nanofluids at
the microscale and the computation cost may not be bearable for
a real flow in a channel. On the other hand, the assumption of con-
sidering the nanofluid as a single-component fluid may be accept-
able and it may not be necessary to handle the nanofluid as a two-
component medium in most regions of the channel except the
interesting area such as the regions near the channel wall. Thus,
a multiscale algorithm may be desirable and feasible for one to
investigate the complicated flow and heat transfer processes of
the nanofluid, which combines the multicomponent model and
the single component model.

As an effective numerical approach, the lattice Boltzmann
method (LBM) based on microscopic model and mesoscopic kinetic
equation appeared in the 1980s (McNamara and Zanetti, 1988;
Higuera et al., 1989; Higuere and Jimenez, 1989). The obvious
advantages of LBM are the simplicity of programming, the parallel-
ism of the algorithm and the capability of incorporating complex
microscopic interactions. This method has been demonstrated its
ability to simulate single component hydrodynamics, multiphase
and multicomponent fluids (Shan and Chen, 1993; Swift et al.,
1996; Sofonea and Frueh 2001; Love et al., 2003), thermal convec-
tion (Massaioli, 1993), flows through porous media (Pan et al.,
2004; Ahrenholz et al., 2006), magnetohydrodynamic (Dellar,
2002), and compressible flow (Li et al., 2007) and so on. To extend
the standard LBM to complex physical phenomena which may be
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Fig. 1. Schematic of nanofluid on different scale.
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across different length and time scales, researchers have attempted
to use irregular lattices and proposed several novel models (Hort-
mann et al., 1990; Nannelli and Succi, 1992; He et al., 1996; Cao
et al., 1997; Filippova and Haenel, 1998; Kandhai et al., 2000;
Shu et al., 2001; Yu et al., 2002; Dupuis and Chopard, 2003; Uber-
tini et al., 2003; Li et al., 2004; Stiebler et al., 2006; Chen et al.,
2006; Kwon and Hosoglu, 2008; Patil and Lakshmisha, 2009). Gen-
erally, the irregular lattices methods can be separated into two cat-
egories (as shown in Fig. 2): one is based on the spatial
interpolation in which the grids are irregular in the total computa-
tional areas and the physical parameters on the grids are achieved
by interpolation (Cao et al., 1997; Stiebler et al., 2006). Some
researchers used the locally embedded grid approach that the
computational area is segmented into different regions with differ-
ent-sized uniform grid, where the physical information is ex-
changed by a coupling boundary (such as Filippova and Haenel,
1998; Yu et al., 2002). However, the above mentioned irregular lat-
tices approaches are applied to single component flow only, which
may be difficult to be used for simulating multicomponent flow
straightly.
Fig. 2. Schematic nonuniform grids: (a) unstructured grids and (b) locally embed-
ded grids.
In this paper, we apply the multiscale analysis approach to sim-
ulating flow and thermal processes of the nanofluid based on the
lattice Boltzmann method. As shown in Fig. 1, on the mesoscale
the nanofluid is regarded as a binary component fluid, and that
the suspended nanoparticles phase and the base fluid phase should
be handled separately, but at the macroscale the nanoparticles and
the base fluid are incorporated into a mixer and the nanofluid can
be regarded as single component one. We use a novel hybrid meth-
od of multicomponent and single-component hybrid method
(MSHM) for studying flow and thermal processes of the nanofluid.
In the present method, the computational domain is divided into
two regions with different-sized uniform grids (fine mesh and
coarse mesh). On the fine meshes the multicomponent lattice
Boltzmann model (MLBM) is used to investigate the binary compo-
nent features of the nanofluid and the single-component lattice
Boltzmann model (SLBM) is adopted on the coarse meshes to re-
duce the computational time. In order to ensure the continuity of
the physical information (physical parameters) in the hybrid re-
gion, the principles of mass and momentum conservations are
obeyed. Examples of Couette flow and heat transfer process are
introduced to validate the feasibility of the MSHM. The flow and
heat transfer characteristics of the nanofluid are investigated. In
addition, the relationship between the computational capability
of MSHM and the refinement parameter n as well as the area ratio
U is discussed (U is the ratio of the volume treated with multi-
component method to the total volume). The paper is organized
in the following: Firstly, the multicomponent and single-compo-
nent hybrid methods are described in Section 2 and more attention
is paid to explain the algorithm of handling transfer of physical
variables across the boundary between two different scaled re-
gions. Then two examples are introduced to validate the accuracy
of the present hybrid method in Section 3. Finally, the computation
efficiency of the hybrid method is discussed.
2. Multicomponent and single-component hybrid method
(MSHM)

The grid schematic of the MSHM is shown in Fig. 3. The coarse
mesh region and the fine mesh region are overlapped and a hybrid
region is formed. The shadows around point C and F represent the
coarse grid area and fine grid area, respectively. To make descrip-
tion clear, some terms are first explained here. Coarse mesh bound-
ary refers to the boundary of the coarse mesh region that lies in the
fine mesh area. For example, point C in Fig. 3 belongs to the coarse
mesh boundary. Similarly, fine mesh boundary indicates the
boundary of fine mesh region that drops in the coarse mesh region
and typical examples are points A, B and G as shown in Fig. 3. Hy-
brid region is for the region between fine mesh boundary and



Fig. 3. Interface of coarse mesh and fine mesh at a parameter of refinement 4.
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coarse mesh boundary. The crossing and circle points represent the
coarse mesh boundary sites and fine mesh boundary sites,
respectively.

On the assumption that the speed of sound is constant on differ-
ent meshes, one has:

Dxc

Dtc ¼
Dxf

Dtf
ð1Þ

where the superscripts f and c respectively stand for the fine mesh
and coarse mesh. Dx and Dt represent the spatial step and time
step, respectively.

For the sake of convenience of numerical computation, the
wrapped trick for coupling the numerical procedures between
the coarse and fine regions is used without loss of generality. For
such a purpose, one can select the refinement parameter n as
(Filippova and Haenel, 1998):

Dxc

Dxf
¼ Dtc

Dtf
¼ n ð2Þ

Obviously, the value of this refinement parameter n dominates the
computational efficiency and it will be investigated in the following
context. To keep the same viscosity on the coarse grids and fine
grids, the relaxation time parameter on the fine mesh region com-
ply with the following relationship:

sf ¼ 1
2
þ n sc � 1

2

� �
ð3Þ

where sf and sc stand for the relaxation time on fine mesh and
coarse mesh of the mixed fluid, respectively.

In this section, we first introduce the SLBM which is applied in
the coarse mesh region, and then the MLBM is for the fine mesh re-
gion to deliver the two-component feature of nanofluids. Special
attention is paid to the overlapped region of coupling the two re-
gions with different scales. With the method being similar to those
used by Shan (1997) and Guo et al. (2002a), the Double Distribu-
tion Function (DDF) model is introduced to describe the momen-
tum and energy transport processes corresponding to both SLBM
and the MLBM.

2.1. Single-component lattice Boltzmann model

According to the well-known D2Q9 model of LBM, the evolution
equations of the velocity and temperature for the single-phase
nanofluid are:
fiðxþ Dtcci; t þ DtcÞ � fiðx; tÞ ¼ �
1
s

fiðx; tÞ � f eq
i ðx; tÞ

� �
ð4Þ

giðxþ Dtcci; t þ DtÞ � giðx; tÞ ¼ �
1
sT

giðx; tÞ � geq
i ðx; tÞ

� �
ð5Þ

where s and sT respectively are the relaxation-time factor for the
relevant collision process of particles, ci is the discrete velocity vec-
tor, and f eq

i and geq
i are the velocity and temperature equilibrium

distribution functions which are given as follows:

f eq
i ¼ qxi 1þ ueq � ci

c2
s
þ ðu

eq � ciÞ2

2c4
s
� ueq2

2c2
s

 !
ð6Þ

geq
i ¼

T
4

1þ 2
ci � ueq

c2

� �
ð7Þ

where q, ueq and T represent the density, the flow velocity and tem-
perature of the nanofluid, respectively. Parameter xi is the weight
coefficients.

xi ¼

4
9 i ¼ 0
1
9 i ¼ 1; . . . ;4
1

36 i ¼ 5; . . . ;8

8><
>: ð8Þ

The macroscopic variables q, ueq, and T are the lattice variables
comply with the following relationships:

q ¼
X8

i¼0

fi ð9Þ

queq ¼
X8

i¼0

cifi ð10Þ

T ¼
X4

i¼1

gi ð11Þ
2.2. Multicomponent lattice Boltzmann model

It is well known that the lattice Boltzmann equation originates
from the microscopic understanding of physical phenomena by
means of the distribution and momentum of the fictitious parti-
cles. The two-component lattice Boltzmann method assumes that
the nanoparticles are mesoscopically located at a series of lattices
and the particles distribution can be expressed as f(x, v, t) (Xuan
and Yao, 2005). Even this algorithm cannot get the tracks of single
particles, but it can significantly reduce the computation time with
accounting for the complicated forces involved in the nanofluid
ensemble. Here the algorithm of two-component lattice Boltzmann
method established in the previous work (Xuan and Yao, 2005) is
extended to multiscale algorithm for simulating the nanofluid, in
which the two-component lattice Boltzmann approach is mainly
applied to the fine mesh region. The evolution equations of the
velocity and temperature are written for each component a in
the nanofluid (Shan and Chen, 1993):

f a
i ðxþ Dtf ci; t þ DtÞ � f a

i ðx; tÞ ¼ �
1
sa f a

i ðx; tÞ � f a;eq
i ðx; tÞ

� �
ð12Þ

ga
i ðxþ Dtf ci; t þ DtÞ � ga

i ðx; tÞ ¼ �
1
sa

T

ga
i ðx; tÞ � ga;eq

i ðx; tÞ
� �

ð13Þ

where f a;eq
i and ga;eq

i are the velocity and temperature equilibrium
distribution functions of the a component and they take the follow-
ing forms:

f a;eq
i ¼ qaxi 1þ ua;eq � ci

c2
s
þ ðu

a;eq � ciÞ2

2c4
s

� ua;eq;2

2c2
s

 !
ð14Þ
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ga;eq
i ¼ T

4
1þ 2

ci � ua;eq

c2

� �
ð15Þ

where qa and ua,eq present the lattice density and the velocity of
component a of the nanofluid, respectively.

In the case that no internal and/or external forces and potentials
act on the particles the total momentum of the particles of all com-
ponents should be conserved by the collision term (Shan and Doolen,
1995). Thus, the equilibrium velocity ua,eq of each phase is equal to
the mixed velocity of the two-component nanofluid as follows:

ueq ¼
P

aqaua=saP
aqa=sa ð16Þ

Similarly, the averaged temperature of the nanofluid in the fine
mesh region yields

T ¼
P

aqaca
pTa=sa

TP
aqaca

p=sa
T

ð17Þ

where ca
p is the specific heat capacity of component a.

Expression (16) is for the case that neither internal nor external
forces and/or potentials act on the lattice particles. Any possible
force sum Fa acting on component a will result in momentum var-
iation FasaDt. In the presence of force vector sum Fa, the equilib-
rium velocity of component a is modified by

qaua;eq ¼ qaueq þ FasaDt ð18Þ

It is clear that the equilibrium velocity ua,eq may be different
from component to component because the force vector Fa may
be different for each component, which is important for the fine
mesh region. This expression reminds us of the fact that there ex-
ists the velocity slip between the suspended nanoparticles compo-
nent and the ambient carrier liquid at the mesoscopic level.

Similarly, by taking the energy exchange between the nanopar-
ticles component and the ambient fluid in the fine region into ac-
count, the equilibrium temperature of component a is modified as
(Xuan et al., 2006):

Ta;eq ¼ Ta þ Dt
dT
dt
¼ Ta;eq þ Dtua�a ð19Þ

where ua�a ¼
ha�a ½T

�aðx;t�DtÞ�Taðx;t�DtÞ�
qaca

p aa , and ha�a is the convective heat
transfer coefficient of nanofluid.

By summing the velocities for both components, we get the
velocity of the mixed fluid:

�u ¼
X

a
qaua þ Dt

2

X
a

Fa

 !,X
a

qa ð20Þ

Thereafter, one can find the slip velocity of each component
with mixed fluid as:

Dua ¼ ua;eq � �u ð21Þ

The slip velocity describes the velocity difference between equi-
librium velocity of component a and the mixed velocity �u, which
will be used in the coupling process.

2.3. Coupling in hybrid region of MSHM

The major difficulty of multiscale simulation for a fluid system
lies in coupling the all variables and parameters descriptions from
different scale regions. Since the multiscale descriptions are artifi-
cially introduced, the variables and parameters should be kept to
be physically continuous at the artificial interface between two
adjacent regions with different scales. Therefore, a suitable cou-
pling scheme is vital for any multiscale method. Establishing an
overlap region is a common approach for multiscale simulation,
which plays a role of buffer to avoid sharp oscillations of variables
and parameters such as velocity and temperature at the interface
and allow the variable solutions from the different scaled regions
to relax and to be coupled together (Nie et al., 2004).

As shown in Fig. 3, a hybrid or overlap region is constructed be-
tween the coarse and fine mesh regions. The physical variables of
the nanofluid on the coarse mesh boundary are obtained by means
of integration of the same variables from the fine grids. On the other
hand, the physical variables of each component of the nanofluid on
the fine mesh boundary are obtained by interpolation from the
coarse grids. The processes of transformation from f f

i to f c
i (or from

f c
i to f f

i ) on the hybrid region are divided into three steps. Firstly,
by integrating process of f f

i , cif
f
i , gf

i , (or f c
i , cif c

i , gc
i ) we can get the phys-

ical parameters of density, velocity and temperature on the fine
mesh region (or coarse mesh region). Then, by integration of these
physical variables of nanofluid on the corresponding fine grids (or
by interpolation of physical variables on the coarse grids), the phys-
ical variables on the coarse (or fine) mesh boundary are obtained. Fi-
nally, by means of the non-equilibrium extrapolation method (Guo
et al., 2002b), the distributions of f c

i (or f f
i ) on the boundary can be

obtained. The detailed processes are described in the following.

2.3.1. Coupling transition from the fine mesh region to the coarse mesh
region

The purpose of coupling transition from the fine region to the
coarse region is to derive the boundary information for the numer-
ical simulation of SLBM on coarse mesh region. As shown in Fig. 3,
integrating or summing the variables and parameter such as the
density, velocity, and temperature for both components along the
fine grids will provide the relevant averaged values for the coarse
region. With regards to the continuum and conservation features
of the incompressible nanofluid flow, we have:

qVc ¼
X

Vf

X
a

qaVf ð22Þ

quVc ¼
X

Vf

X
a

qauaVf ð23Þ

qcpTVc ¼
X

Vf

X
a

qaca
pTaVf ð24Þ

FoVc ¼
X

Vf

X
a

FaVf ð25Þ

where Vc is the volume of a single coarse grid, Vf is the volume of a
single fine grid, Fo is the vector sum of all forces acting on the fluid,
and Fa is the vector sum of the internal and/or external forces on
component a in the fine mesh region. By integrating these expres-
sions, the relevant physical parameters have been obtained and
then the post-collision distribution functions of the velocity and
temperature on the boundary of coarse grids can be calculated by
the non-equilibrium extrapolation scheme (Guo et al., 2002b):

f c
i ðx; tÞ ¼ f c;eq

i ðx; tÞ þ f c;neq
i ðxa; tÞ ð26Þ

gc
i ðx; tÞ ¼ gc;eq

i ðx; tÞ þ gc;neq
i ðxa; tÞ ð27Þ

where f c;eq
i and gc;eq

i are the equilibrium distributions calculated
from Eqs. (6) and (7), f c;neq

i and gc;neq
i are the non-equilibrium distri-

butions on coarse grid xa and can be obtained from:

f c;neq
i ðxa; tÞ ¼ fiðxa; tÞ � f eq

i ðxa; tÞ ð28Þ

gc;neq
i ðxa; tÞ ¼ giðxa; tÞ � geq

i ðxa; tÞ ð29Þ

where xa is site of the adjacent inner coarse grid. It is noted that the
non-equilibrium extrapolation scheme has the second-order accu-
racy and good numerical stability. In the paper we will use such
treatment to the artificial boundary.
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2.3.2. Coupling transition from the coarse mesh region to the fine mesh
region

As mentioned above, a time step Dtc for the coarse region cor-
responds to n time steps Dtf for the fine region and a coarse spatial
step Dxc contains n fine spatial steps Dxf. Thus, the interim or tem-
porary information at a series of fine time and special steps is lack-
ing for the coupling from the coarse region to the fine region and
the interpolation processes are needed. For the sake of simplicity,
the linear interpolation algorithm is used on the temporal steps
and the second-order parabolic interpolation is adopted for the
spatial interpolation process. Since the calculation steps start up
from the coarse mesh region, so one first gets the relevant variables
and parameters on the coarse grids at the time of t + Dtc. At the
same time, the physical variables on the fine mesh boundary which
also lies in the inner of the coarse meshes can be obtained the val-
ues at time t + Dtc. Then, by means of the temporal interpolation
between the time of t and t + Dtc as well as the spatial interpola-
tion, one will get the physical parameters of mixed fluid on the fine
mesh boundary at the relevant time. And then by some assump-
tions, the physical parameters (velocity, density and temperature)
of each component could be obtained. Finally, by means of non-
equilibrium extrapolation scheme, the post-collision distribution
functions of each component of the nanofluid on the fine mesh
boundary can be achieved. The concrete description of interpola-
tion processes are as follows.

The temporal interpolation from the physical parameters of the
mixed fluid between t and t + Dtc on the coarse grids provides the
relevant information corresponding to k time steps kDtf

(k = 1, 2, . . . , n) on the fine mesh boundary:

qf ðx; t þ kDtf Þ ¼ 1� k
n

� �
qcðx; tÞ þ k

n
qcðx; t þ DtcÞ ð30Þ

uf ðx; t þ kDtf Þ ¼ 1� k
n

� �
ucðx; tÞ þ k

n
ucðx; t þ DtcÞ ð31Þ

Tf ðx; t þ kDtf Þ ¼ 1� k
n

� �
Tcðx; tÞ þ k

n
Tcðx; t þ DtcÞ ð32Þ

By the spatial interpolation on coarse grids, we obtain the rele-
vant values of mix fluid at x + lDxf (l = 1, 2, . . . , n) on the fine mesh
boundary:

qf ðxþ lDxf ; t þ kDtf Þ ¼ að1Þ � qcðx� Dxc; t þ kDtf Þ þ að2Þ
� qcðx; t þ kDtf Þ þ að3Þ
� qcðxþ Dxc; t þ kDtf Þ ð33Þ

uf ðxþ lDxf ; t þ kDtf Þ ¼ að1Þ � ucðx� Dxc; t þ kDtf Þ þ að2Þ
� ucðx; t þ kDtf Þ þ að3Þ
� ucðxþ Dxc; t þ kDtf Þ ð34Þ

Tf ðxþ lDxf ; t þ kDtf Þ ¼ að1Þ � Tcðx� Dxc; t þ kDtf Þ þ að2Þ
� Tcðx; t þ kDtf Þ þ að3Þ
� Tcðxþ Dxc; t þ kDtf Þ ð35Þ

where að1Þ ¼ � lDxf ðDxc�lDxf Þ
2Dx2

c
, að2Þ ¼ ðDxc�lDxf ÞðDxcþlDxf Þ

Dx2
c

, and að3Þ ¼
lDxf ðDxcþlDxf Þ

2Dx2
c

.
Then, considering the slip velocity of each component a, the

equilibrium velocity of component a on the fine mesh boundary
is modified as:

uf ;aðxþ lDxf ; t þ kDtf Þ ¼ uf ðxþ lDxf ; t þ kDtf Þ þ Duaðxa; t þ kDtf Þ
ð36Þ
where xa is site of the adjacent inner fine grid and Dua is the slip
velocity given in Eq. (21).

Here it should be emphasized that as indicated by the relation-
ship in Eq. (2), the speed of sound is assumed to be constant on dif-
ferent meshes. This expression elucidates the same wrapped
relationship for both the spatial steps and the temporal steps cor-
responding to different scale regions, which means that the num-
ber of the spatial interpolation steps is equal to that of the
temporal interpolation steps. Therefore, the same refinement
parameter n is introduced for both the spatial and temporal inter-
polation. Once the density distribution of the mixed fluid qf is
known, the density distributions of nanoparticle phase qP and
the base fluid phase qL can be calculated from:

qPðxþ lDxf ; t þ kDtf Þ ¼ ðqf ðxþ lDxf ; t þ kDtf Þ � qLÞ=ðqp � qLÞ � qp

ð37Þ

qLðxþ lDxf ; t þ kDtf Þ ¼ ð1:0� ðqf ðxþ lDxf ; t þ kDtf Þ
� qLÞ=ðqp � qLÞÞ � qL ð38Þ

where qp and qL are the density of pure nanoparticles and base
fluid, respectively.

Based on the assumption that the temperatures of all compo-
nents are equal to the mixture temperature in the hybrid region,
one has:

Taðxþ lDxf ; t þ kDtf Þ ¼ Tf ðxþ lDxf ; t þ kDtf Þ ð39Þ

Thus, the post-collision distribution functions of each compo-
nent of the nanofluid on the fine mesh boundary can be calculated
by the non-equilibrium extrapolation scheme (Guo et al., 2002b):

f f ;a
i ðx; tÞ ¼ f f ;eq;a

i ðuf ;aðx; tÞ;qaðx; tÞÞ þ f f ;neq;a
i ðuf ;aðxa; tÞ;qaðxa; tÞÞ

ð40Þ

gf ;a
i ðx; tÞ ¼ gf ;eq;a

i ðuf ;aðx; tÞ;qaðx; tÞ; Taðx; tÞÞ þ gf ;neq;a
i ðuf ;aðxa; tÞ;qaðxa; tÞÞ

ð41Þ

here f f ;eq;a
i and gf ;eq;a

i are the equilibrium distributions calculated by

Eqs. (14) and (15). f f ;neq;a
i and gf ;neq;a

i are the non-equilibrium distribu-

tions on the adjacent fine grid xa. f f ;neq;a
i ðxa; tÞ ¼ f f ;a

i ðxa; tÞ � f f ;eq;a
i ðxa; tÞ

and gf ;neq;a
i ðxa; tÞ ¼ gf ;a

i ðxa; tÞ � gf ;eq;a
i ðxa; tÞ.

2.4. Computational steps

The basic algorithm steps of the hybrid simulation:

(1) streaming fi(x, t) and gi(x, t) on inner coarse grids;
(2) calculating the physical parameters q(x + Dxc, t + Dtc),

u(x + Dxc, t + Dtc), and T(x + Dxc, t + Dtc) on inner coarse grids and
then getting the post-collision distribution functions f a

i ðxþ Dxc;

t þ DtcÞ and ga
i ðxþ Dxc; t þ DtcÞ;

(3) conducting the spatial and temporal interpolation to get the
values of qf,a(x + lDxf, t + kDtf), uf,a(x + lDxf, t + kDtf), and Tf,a(x +
lDxf, t + kDtf), and then obtaining the post-collision distribution
functions f a

i ðxþ lDxf ; t þ kDtf Þ and ga
i ðxþ lDxf ; t þ kDtf Þ on the fine

mesh boundary by Eqs. (40) and (41);
(4) carrying out computation for n times to find f a

i , ga
i ,

qa(x + Dxf, t + Dtc), ua(x + Dxf, t + Dtc), and Ta(x + Dxf, t + Dtc) on
inner fine grids;

(5) integrating qa(x + Dxf, t + Dtc), ua(x + Dxf, t + Dtc), and
Ta(x + Dxf, t + Dtc) along the coarse mesh boundary to obtain
q(x + Dxc, t + Dtc), u(x + Dxc, t + Dtc), T(x + Dxc, t + Dtc), and then
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by Eqs. (28) and (29) get the post-collision distribution functions
f a
i ðxþ Dxc; t þ DtcÞ and ga

i ðxþ Dxc; t þ DtcÞ on coarse mesh bound-
ary; and

(6) returning to step 1 for a new circulation.
2.5. Forces and potentials in a nanofluid

Keep in mind that the two-component feature of the nanofluid
in the fine mesh region is vital and one can handle the interaction
between the nanoparticles component and the ambient base liquid
as well as the interparticles action by means of a series of forces
and potentials. Since the nanofluid can be considered as a type of
the colloidal suspension, one can use the colloid theory to describe
the dynamics of the suspended nanoparticles. Several internal and
external forces or potentials are exerted on the nanofluid system
such as the buoyancy and the gravitational force FH, the interaction
potential FA among the nanoparticles, the drag force FD, and the
Brownian force Fi. By summing up all these forces on each particle
and multiplying the number of particles on each grid, the total
forces on each grid will be obtained. Here we give the brief intro-
duction to these forces and the detailed expressions have been dis-
cussed in the previous work (Xuan and Yao, 2005).

The buoyancy and gravity force is given as:

FH ¼ �
1
6
pd3

pgDq0 ð42Þ

where dp is the diameter of the nanoparticle and Dq0 is the mass
density difference between the suspended nanoparticle and the
base fluid.

The drag force (Stokes force) is:

FD ¼ �3pdplDu ð43Þ

where l is the viscosity of the fluid and Du is the velocity difference
between the particle and the base fluid.

The interactions potential between the nearest neighbor nano-
particles is (Russel et al., 1989):

VA ¼ �
1
6

A
2a2

L2 � 4a2
þ 2a2

L2 þ ln
L2 � 4a2

L2

 !
ð44Þ

where L is the center-to-center distance between particles, and A is
the Hamaker constant which accounts for the material properties
independent of the geometrical shape. For all of the nanoparticles
within the adjacent lattices in the D2Q9 model, the force caused
by the interaction potential is written as:

FA ¼
X8

i¼1

Ni
@VA

@ri
ð45Þ

where N is the number of the particles within the adjacent lattice i,
N = qpVf/mp (mp is the mass of a single nanoparticle).

Although the Brownian motion is irregular, the Brown force can
be considered as the comprehensive effect of the actions exerted
by the surrounding molecules of the fluid and the thermal energy.
Since Brownian motion is generally simulated as a Gaussian white-
noise process, the algorithm for simulating the Brownian force is
similar to that for generating a white-noise process modeled as a
Gaussian white-noise process (He and Ahmadi, 1999):

FiðtÞ ¼ Gi

ffiffiffiffiffiffiffiffiffiffi
C=dt

q
ð46Þ

where the parameter Gi is a Gaussian random number with zero
mean and unit variance, and C = 6pldpkBT.

Thus, the vector sum of the total forces acting on the nanopar-
ticles component per unit lattice volume is:

FP ¼ NðFA þ Fi þ FD þ FHÞ=V ð47Þ
where N is the number of the particles in a given lattice and V is the
lattice volume. On the other hand, the forces act on the fluid mole-
cules in a given lattice can be expressed as reaction of the drag force
and Brownian force:

Fw ¼ �NðFi þ FDÞ ð48Þ

It is emphasized that the sum of some forces is equal to zero for
the single mixed fluid in the coarse region because of the fact that
they are intra forces within the system and appear in pair with
opposite signs. For the coarse region, only the forces induced by
the external fields such as the buoyancy and the gravitational force
FH need to be treated in the model. On the other hand, all the inter-
nal and external forces as well as potentials must separately han-
dled for each component in the fine region.

3. Results and discussion

In this section, two simple examples are introduced to show
how to apply the above-described multiscale simulation approach
to the flow and energy transport processes of nanofluids inside a
microchannel. The first one is a sudden-start Couette flow. For
the case of larger shear force may appear nearby the moving upper
plate at the startup process, the MLBM with fine meshes will be ap-
plied in the region near the upper plate. The other example is the
convection in a parallel plate channels with the high constant tem-
perature on the top plate, and the fine meshes nearby the top plate
are used for exactly simulating the heat transfer process. From
these two examples, the accuracy of the hybrid method will be dis-
cussed and the flow and energy transfer characteristic of nanofluid
will be investigated at the same time.

3.1. Sudden-start Couette flow

A sudden-start Couette flow of the Cu-water nanofluid with the
volume fraction of 1% Cu nanoparticles whose diameter is 10 nm in
the microchannel is simulated. The density of Cu nanoparticles and
the base fluid is qp = 8930 kg/m3 and qL = 997 kg/m3, respectively.
The viscosity of the nanofluid is m = 1.2 � 10�6 m2/s. The fluid is
confined between two parallel plates with the distance of
Ly = 50 lm, and the fluid temperature is 300 K. Initially, the fluid
velocity is assumed to be zero. At t = 0, the upper plate begins to
move at a constant velocity u0 = 0.01 m/s, while the bottom plate
is fixed. As shown in Fig. 4, the MLBM with fine meshes is applied
in the region nearby the moving upper plate (y > 42 lm), the SLBM
Fig. 4. Schematic of Couette flow.



Fig. 5. Horizontal velocity ux as a function of y (the hybrid results of the single-
component method portion and multi-component method portion are respectively
shown with hollows and asterisks and the results from the pure MLBM are shown
with line).
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with coarse meshes is applied to most region of the channel
(y < 40 lm) and the overlap region will be simulated by both the
SLBM and MLBM (40 lm 6 y 6 42 lm). Periodic boundary condi-
tions are used at the entrance and exit of the channel in the x direc-
Fig. 6. Distributions of velocities (a) ux of the mixed nanofluid on coarse mesh scale (b) u
fine mesh scale and (d) up

x of nanoparticle component on fine mesh scale without consi
tion. In addition, no-slip boundary conditions are imposed at both
the top and the bottom. The spatial steps and the time steps are:
Dxc = 2 � 10�6 m, Dtc = 1 � 10�7 s, Dxf = Dxc/16, and Dtf = Dtc/16,
and the refinement parameter is n = 16. The relaxation-time factors
sc and sf are given as 0.59 and 1.94 for the coarse mesh region and
the fine mesh region, respectively.

3.1.1. The continuity of physical information on the hybrid region
Fig. 5 shows the velocity profiles at different time of sudden-

start Couette flow obtained by both the hybrid method and the
pure MLBM. The hybrid results of the single-component method
portion and multi-component method portion are shown by hol-
lows and asterisks, respectively, and the pure MLBM result is
shown by the line. The velocity of mixed fluid on the fine mesh re-
gion is calculated by Eq. (20). At the beginning, only the upper re-
gion of the fluid experiences the drag effect from the upper plate.
Later, the steady state linear Couette profile is formed. It is shown
that the results of hybrid method and the pure MLBM agree well.
Furthermore, the result of single-component method portion and
multi-component method portion of the MSHM track closely in
the overlap region. This demonstrates that the continuity of phys-
ical parameters at the hybrid interface can be assured by using the
present hybrid method.

3.1.2. The fluid features and morphology of nanofluid on different
scales

The flow features of nanofluid on different mesh scales at
t = 2 � 10�4 s are shown in Fig. 6. On coarse mesh scale the velocity
p
x of nanoparticle component on fine mesh scale (c) uf

x of base liquid component on
dering the internal and external forces.
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ux of mixed fluid is invariable along the x direction as shown in
Fig. 6a. On the fine mesh scale, up

x of the nanoparticle component
shows obvious fluctuation along the x direction (as shown in
Fig. 6b). Compared with the ul

x distribution of base liquid (as shown
in Fig. 6c), up

x of nanoparticle component presents more asymmet-
ric characteristic. For analyzing the velocity fluctuation on the fine
mesh scale, we simulate the same case with the hybrid method by
neglecting the forces given in Eqs. (42)–(46). The results indicate
that such fluctuation disappears (as shown in Fig. 6d). Thus, we
can affirm that the fluctuation mainly results from the complicated
forces acting on the suspended nanoparticles.

Fig. 7 shows the morphologic characteristics of nanofluid on dif-
ferent scales, in which the vertical coordinate on the right-hand
side denotes the density of the nanofluid. For the case that the vol-
ume fraction of Cu nanoparticles is 1%, the average density of the
Cu-water nanofluid is 1076.33 kg/m3. As shown in Fig. 7a, on the
coarse mesh scale the density distribution of the mixed fluid q fluc-
tuates within the span of 0.0001 kg/m3, while on the fine mesh
scale the fluctuant span of nanoparticles density qp is 0.0067 kg/
m3 (as shown in Fig. 7b). The density fluctuation of the nanofluid
may due to that the present hybrid method has considered the
complicated forces acting on each component of nanofluid. This
fluctuation was also indicated in the previous work (Xuan and
Yao, 2005). The refinement parameter n also influences the density
distribution feature. The simulation results for n = 5 are shown in
Fig. 7c and d. Comparing Fig. 7a and b with Fig. 7c and d, one will
find that on the coarse mesh scale the density fluctuations of
mixed fluid are similar for different refinement n, but at the fine
mesh scale the density fluctuations of nanoparticle component in-
Fig. 7. Density distribution (a) density of mixed nanofluid on coarse mesh scale, n = 16 (b)
coarse mesh scale, n = 5 and (d) density of nanoparticles on fine mesh scale, n = 5.
crease with the refinement n. The reason is due to the fact that
with the increase of refinement n, the multiphase characteristic
of nanofluid becomes more and more protrudent. It is emphasized
that all the fluctuations of densities and velocities may influence
the heat transfer process, and we will discuss the convection of
nanofluid in the next section.
3.2. Convection within parallel plate channels

To investigate the heat transfer features of nanofluid, a laminar
flow in a channel within parallel plates is simulated. The fluid used
in the simulation is the Cu–Water nanofluid with the volume frac-
tion of 1% Cu nanoparticles whose diameter is 10 nm. The length of
the simulation domain is Lx = 40 lm and the width Ly = 20 lm. An
external force Fx = 2 � 106 N/m3 along the x direction is introduced
as a driving force. Initially, the nanofluid is stationary and the fluid
temperature is assumed to T0 = 300 K. The dimensionless tempera-
ture is defined as: T� = (T � T0)/(Tup � T0), where Tup is the constant
temperature of top plate, Tup = 350 K. Obviously, the dimensionless
temperature of the top plate is T�w ¼ 1 and the inlet temperature of
the nanofluid is T�in ¼ 0, the bottom plate is insulated. In the region
of y < 10 lm, the SLBM is applied with Dxc = 1 � 10�6 m,
Dtc = 5 � 10�8 s. In the region of y > 11 lm, the MLBM is used with
Dxf = 0.125 � 10�6 m, Dtf = 0.625 � 10�8 s, The relaxation-time
factors sc and sf are set to be 0.68 and 1.94, and the thermal relax-
ation-time factor are sc

T ¼ 0:5162 and sf
T ¼ 0:6297, respectively.

The overlapped region (10 lm 6 y 6 11 lm) is described by the
both SLBM and MLBM.
density of nanoparticles on fine mesh scale, n = 16 (c) density of mixed nanofluid on
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3.2.1. Temperature distribution of nanofluid
Fig. 8 shows the temperature distribution obtained from differ-

ent approaches at t = 1 � 10�4 s. Fig. 8a and c correspond to the
temperature distribution of the nanofluid by the MSHM and pure
MLBM approaches, respectively. Fig. 8b shows the temperature
distribution of the nanofluid obtained from the pure SLBM ap-
proach. The size of coarse grids used in the MSHM is the same as
that for the SLBM and the size of fine grids used in the hybrid
method is equal to that in the MLBM. By comparing Fig. 8a or c
with Fig. 8b, one can find that in the inlet region the isotherm is
acute. This may be that the MSHM or pure MLBM considers the
internal forces between nanoparticles and base fluid and these
forces induce fluctuation of the velocities and densities nanofluid,
so that the heat transfer process is locally enhanced. To quantita-
tively investigate the heat transfer process of nanofluid, the Nussle
number Nu is introduced and discussed in the following.

3.2.2. The Nusselt number with different approaches
The Nusselt number Nu is defined as:

NuðxÞ ¼ hðxÞLy

k
¼ Ly

½TwðxÞ � TbðxÞ�
@T
@y

� �
y¼Ly

ð49Þ
Fig. 8. Temperature distribution (a) temperature of nanofluid obtained from the
MSHM approach (b) temperature of nanofluid from the Pure SLBM and (c)
Temperature of nanofluid from the MLBM.
where h(x) is the local convective heat transfer coefficient, k is the
thermal conductivity of nanofluid, and Tb(x) is the average temper-
ature of mixed fluid at position x.

Fig. 9 respectively presents the Nusselt number Nu values ob-
tained by using MSHM, pure SLBM and pure MLBM as well as
the Nusselt number of pure water by SLBM at t = 1 � 10�4 s. As
shown in Fig. 9, the values of the Nusselt number obtained by using
different approaches show almost the same tendency near the en-
trance and diminish rapidly along the flow direction and finally
reach a constant. Compared with pure water, the averaged Nu of
nanofluid obtained from the MSHM increases about 8.34%. The
remarkable enhancement appears at the entrance region (0 <
x/Lx < 0.3) and reaches about 12.16% and then such tendency is re-
tarded along with the axial distance. Numerical simulation from
the SLBM approach shows that the Nu of nanofluid also increases
compared with that of pure water. The enhancement tendency
agrees well with the experimental data (Wen and Ding, 2004).
From Fig. 9, one can also find that the Nu obtained from the MSHM
approach coincides well with that from the MLBM. But the latter
one will cost much more computation time. It reminds us of the
fact that although the MLBM can accurately simulate the flow
and energy transfer process but it will cost much more computa-
tion time compared with the MSHM approach. In the next section
we will discuss the computational efficiency of MSHM.

4. Computational efficiency analysis

A high computational efficiency is very significant for a numer-
ical approach, so that it is necessary to investigate the factors
which may affect the computational efficiency. The efficiency of
the hybrid method is mainly dominated by the refinement param-
eter n and U (U is the ratio of the volume treated with multi-com-
ponent method to the total volume of the whole region). In this
section we discuss the relationship between computation effi-
ciency from the numerical results of the sudden-start Couette flow
corresponding to the Pentium(R) 4 CPU 3.00 GHz processor. The
computational convergence criterion is given as:P

i;jjuxðtÞ � uxðt � DtÞjP
i;jjuxðtÞj

< 10�6 ð50Þ

Fig. 10 shows the computational time related with refinement
parameter n for different approaches. The coarse grid size used in
the hybrid method is the same as that in the pure SLBM and the fine
grid size used in the hybrid method is equal to that in the pure
Fig. 9. Nu along the x direction.



Fig. 10. The relation between computation time and refinement parameter n.

Fig. 11. The relation between computation time and U.
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MLBM approach. Here U is set to be 40%. The results indicate that
the pure MLBM consumes the maximum computational time
and the hybrid method used less time compared with the pure
MLBM. The computational time for either the hybrid approach or
the pure MLBM exponentially increases with the refinement
parameter n as shown in Fig. 10. Thus, the hybrid approach can
remarkably reduce the computational time compared with the
MLBM, and it is more important for bigger refinement parameter n.

Fig. 11 shows the computational time consumed by the hybrid
method for different values of parameter U. One can find that the
computational time increases linearly with U. As the computation
region corresponding to the MLBM approach increases by five times
(i.e., parameter U increases from 0.1 to 0.5), the consumed computa-
tion time increases more than 5-fold for the case of n = 16. It indi-
cates that the total computational time is mainly determined by
the region ratio where the MLBM is applied. There exists compro-
mise between the MLBM application portion of the solution region
and the affordable computational time.

5. Conclusions

Based on the lattice Boltzmann method, a novel multicompo-
nent and single-component hybrid method (MSHM) for the nano-
fluid has been proposed, in which the multicomponent lattice
Boltzmann model is used in interfacial regions where the velocity
or temperature change rapidly and the single-component lattice
Boltzmann model is applied in the region where the nanofluid
can be treated as a single mixed fluid. The simulation results for
the Couette flow and convection within a channel confined be-
tween two parallel plates have shown that on the coarse grid scale
the conservation principles of mass, momentum and energy
along the hybrid boundary of the MSHM approach can be guaran-
teed and the accuracy of numerical results from the MSHM can be
assured.

As the refinement parameter n increases, the computational re-
sults will more clearly reveal the multiphase feature of nanofluid in
the fine mesh region. The computational time of the MSHM in-
creases linearly with the parameter U and exponentially with the
refinement parameter n. The presented hybrid approach is more
efficient than the pure MLBM with the acceptable accuracy, which
may be of great significance for improving our understanding of
the flow and heat transfer process of nanofluids.

Acknowledgment

This work is sponsored by the National Natural Science Founda-
tion of China (Grant No. 50436020).

References

Ahrenholz, B., Toelke, J., Krafczyk, M., 2006. Lattice-Boltzmann simulations in
reconstructed parametrized porous media. Int. J. Comput. Fluid D 20, 369–377.

Arulmurugan, R., Vaidyanathan, G., Sendhilnathan, S., Jeyadevan, B., 2005.
Preparation and properties of temperature-sensitive magnetic fluid having
Co0.5Zn0.5Fe2O4 and Mn0.5Zn0.5Fe2O4 nanoparticles. Physica B 368, 223–230.

Cao, N., Chen, S., Jin, S., Martinez, D., 1997. Physical symmetry and lattice symmetry
in the lattice Boltzmann method. Phys. Rev. E 55, 22–24.

Chen, H., Filippova, O., Hoch, J., Molvig, K., Shock, R., Teixeira, C., Zhang, R., 2006.
Grid refinement in lattice Boltzmann methods based on volumetric
formulation. Physica A 362, 158–167.

Choi, U.S., 1995. Enhancing thermal conductivity of fluids with nanoparticles. ASME
FED 231, 99–103.

Das, S., Putra, N., Roetzel, W., 2003. Pool boiling of nano-fluids on horizontal narrow
tubes. Int. J. Multiphase Flow 29, 1237–1247.

Das, S., Choi, S., Patel, H., 2006. Heat transfer in nanofluids—a review. Heat Transfer
Eng. 27, 3–19.

Dellar, P., 2002. Lattice Kinetic Schemes for Magnetohydrodynamics. J. Comput.
Phys. 179, 95–126.

Dupuis, A., Chopard, B., 2003. Theory and applications of an alternative lattice
Boltzmann grid refinement algorithm. Phys. Rev. E 67, 066707.

Enomoto, Y., Oba, K., Okada, M., 2003. Simulation study on microstructure
formations in magnetic fluids. Physica A 330, 496–506.

Filippova, O., Haenel, D., 1998. Grid refinement for lattice-BGK models. J. Comput.
Phys. 147, 219–228.

Guo, Z., Shi, B., Zheng, C., 2002a. A coupled lattice BGK model for the Bouessinesq
equation. Int. J. Numer. Methods Fluid 39, 325–342.

Guo, Z., Zheng, C., Shi, B., 2002b. Non-equilibrium extrapolation method for velocity
and pressure boundary conditions in the lattice Boltzmann method. Chinese
Phys. 11, 366–374.

He, C., Ahmadi, G., 1999. Particle deposition in a nearly developed turbulent duct
flow with electrophoresis. J. Aerosol Sci. 30, 739–758.

He, X., Luo, L., Dembo, M., 1996. Some progress in lattice Boltzmann method part 1.
Nonuniform mesh Grids. J. Comput. Phys. 129, 357–362.

Higuera, F.J., Succi, S., Benzi, R., 1989. Lattice gas dynamics with enhanced collisions.
Europhys. Lett. 9, 345–349.

Higuere, F., Jimenez, J., 1989. Boltzmann approach to lattice gas simulations.
Europhys. Lett. 9, 663–668.

Hortmann, M., Peric, M., Scheuerer, G., 1990. Finite volume multigrid prediction of
laminar natural convection: bench-mark solutions. Int. J. Numer. Methods
Fluids 11, 189–207.

Kandhai, D., Soll, W., Chen, S., Hoekstra, A., Sloot, P., 2000. Finite-difference lattice-
BGK methods on nested grids. Comput. Phys. Commun. 129, 100–109.

Kim, P., Shi, L., Majumdar, A., McEuen, P.L., 2001. Thermal transport measurements
of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502-1-4.

Kwon, Y., Hosoglu, S., 2008. Application of lattice Boltzmann method, finite element
method, and cellular automata and their coupling to wave propagation
problems. Comput. Struct. 86, 663–670.

Lee, S., Choi, S.U.S., Li, S., Eastman, J.A., 1999. Measuring thermal conductivity of
fluids containing oxide nanoparticles, transactions of ASME. J. Heat Trans. 121,
280–289.

Li, Y., Eugene, J., LeBoeuf, Basu, P., 2004. Least-squares finite-element lattice
Boltzmann method. Phys. Rev. E 69, 065701(R).



374 L. Zhou et al. / International Journal of Multiphase Flow 36 (2010) 364–374
Li, Q., He, Y., Wang, Y., Tao, W., 2007. Coupled double-distribution-function lattice
Boltzmann method for the compressible Navier–Stokes equations. Phys. Rev. E
76, 056705.

Love, P., Nekovee, M., Coveney, P., Chin, J., González-Segredo, N., Martin, J., 2003.
Simulations of amphiphilic fluids using mesoscale lattice-Boltzmann and
lattice-gas methods. Comput. Phys. Commun. 153, 340–358.

Massaioli, F., 1993. Exponential tails in two-dimensional Rayleigh-Bénard
Convection. Europhys. Lett. 21, 305–310.

McNamara, G.R., Zanetti, G., 1988. Use of the Boltzmann equation to simulate
lattice-gas automata. Phys. Rev. Lett. 61, 2332–2335.

Nannelli, F., Succi, S., 1992. The lattice Boltzmann equation on irregular lattices. J.
Stat. Phys. 68, 401–407.

Nie, X.B., Chen, S.Y., E, W.N., Robbins, M.O., 2004. A continuum and molecular
dynamics hybrid method for micro- and nano-fluid flow. J. Fluid Mech. 500, 55–
64.

Pan, C., Hilpert, M., Miller, C., 2004. Lattice-Boltzmann simulation of two-phase flow
in porous media. Water Resour. Res. 40, 1–14.

Patil, Dhiraj V., Lakshmisha, K.N., 2009. Finite volume TVD formulation of lattice
Boltzmann simulation on unstructured mesh. J. Comput. Phys. 228, 5262–5279.

Russel, W.B., Saville, D.A., Schowalter, W.R., 1989. Colloidal Dispersion. Cambridge
University Press, Cambridge.

Shan, X., 1997. Simulation of Rayleigh-Benard convection using a lattice Boltzmann
method. Phys. Rev. E 55, 2780–2788.

Shan, X., Chen, H., 1993. Lattice Boltzmann model for simulating flows with
multiple phases and components. Phys. Rev. E 47, 1815–1819.
Shan, X., Doolen, G., 1995. Multicomponent lattice-Boltzmann with interparticle
interaction. J. Stat. Phys. 81, 379–393.

Shu, C., Chew, Y.T., Niu, X.D., 2001. Least square-based LBM: a meshless approach
for simulation of flows with complex geometry. Phys. Rev. E 64, 1–4.

Sofonea, V., Frueh, W., 2001. Lattice Boltzmann model for magnetic fluid interfaces.
Eur. Phys. J. B 20, 141–149.

Stiebler, M., Tölke, J., Krafczyk, M., 2006. An upwind discretization scheme for the
finite volume lattice Boltzmann method. Comput. Fluids 35, 814–819.

Swift, M., Orlandini, E., Osborn, W., Yeomans, J., 1996. Lattice Boltzmann
simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54, 5041–5052.

Ubertini, S., Bella, G., Succi, S., 2003. Lattice boltzmann method on unstructured
grids: further developments. Phys. Rev. E 68, 016701.

Wang, X., Xu, X., Choi, U.S., 1999. Thermal conductivity of nanoparticle fluid
mixture. J. Thermophys. Heat Transfer 13, 474–480.

Wen, D., Ding, Y., 2004. Experimental investigation into convective heat transfer of
nanofluids at the entrance region under laminar flow conditions. Int. J. Heat
Mass Transfer 47, 5181–5188.

Xuan, Y., Li, Q., 2000. Heat transfer enhancement of nano-fluids. Int. J. Heat Fluid
Flow 21, 58–64.

Xuan, Y., Yao, Z., 2005. Lattice Boltzmann modal for nanofluids. Heat Mass Transfer
41, 199–205.

Xuan, Y., Li, Q., Ye, M., 2006. Lattice Boltzmann simulation of flow and heat transfer
of ferrofluid. J. Eng. Thermophys. 27, 1020–1022.

Yu, D., Mei, R., Shyy, W., 2002. A multi-block lattice Boltzmann method for viscous
fluid flows. Int. J. Numer. Methods Fluids 39, 99–120.


	Multiscale simulation of flow and heat transfer of nanofluid with lattice Boltzmann method
	Introduction
	Multicomponent and single-component hybrid method (MSHM)
	Single-component lattice Boltzmann model
	Multicomponent lattice Boltzmann model
	Coupling in hybrid region of MSHM
	Coupling transition from the fine mesh region to the coarse mesh region
	Coupling transition from the coarse mesh region to the fine mesh region

	Computational steps
	Forces and potentials in a nanofluid

	Results and discussion
	Sudden-start Couette flow
	The continuity of physical information on the hybrid region
	The fluid features and morphology of nanofluid on different scales

	Convection within parallel plate channels
	Temperature distribution of nanofluid
	The Nusselt number with different approaches


	Computational efficiency analysis
	Conclusions
	Acknowledgment
	References


